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Space charge limited photoelectric emission in a 
plane parallel electrode geometry 

C B WHEELER 
Plasma Physics Department, Imperial College, London SW7, UK 

MS received 23 March 1972 

Abstract. The problem of space charge limited photoelectric emission in a plane parallel 
electrode geometry is considered for an emitting electrode composed of material with a 
constant optical absorption coefficient and a classical step surface barrier. Poisson’s 
equation is solved for the limit of zero cathode temperature and this solution shown to be 
applicable tb the general case if the ratio of the collection current J to the saturation current 
J ,  satisfies ( n * / 3 ) { k T / h ( ~ - v , ) } ~  << J / J ,  < 0.5 where T is the cathode temperature, hv the 
incident quantum energy and hv, the threshold energy. For a given anode voltage of either 
polarity it is shown that there are three characteristic anode currents-the current for onset 
of space charge limitation, the maximum limited current and the completely limited current. 
When the anode is positive all three currents are greater than the Langmuir-Child limit. 
For zero anode voltage the current flow is always space charge limited and also exhibits a 
maximum and complete limitation. When limitation takes place the space charge potential 
minimum is always situated between the cathode and the midelectrode plane if the anode is 
positive, whereas for a negative anode it can be positioned anywhere between the electrodes. 

1. Introduction 

The influence of space charge on the process of thermionic emission in a plane parallel 
electrode geometry was first considered by Fry (1921) and subsequently extended by 
Langmuir (1923). This paper is concerned with the additional process of photoelectric 
emission, thereby introducing two more variables into the analysis, namely the intensity 
and frequency of the radiation illuminating the emitting electrode. In order that the 
problem can be tackled analytically it is necessary to restrict considerations to pure 
metal cathodes for which a very simple model of the emission process is valid, as shown 
by the pioneer work of Fowler (1931) and Dubridge (1933). Consequently the results 
of this present work are only rigorously applicable to systems using pure metal cathodes 
such as the gold or palladium photocathodes that are used in demountable systems. 
However the results can be tentatively applied to more complex cathode materials if 
operation is carried out very near to the threshold region. Such operation ensures 
that the electron emission spectrum is largely determined by the well defined tail of 
the energy distribution of electrons within the cathode material. The formulation of 
the general space charge problem follows closely the treatment given by Fry (1921) 
and all quantities are expressed in the CGS ESU system. 

2. General mathematical formulation 

Consider a plane parallel electrode configuration situated in vacuum and let the cathode 
emit a steady stream of electrons of unspecified energy distribution. If the anode is at 
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a positive potential and does not collect the full saturation current then there must be 
a region of negative potential gradient adjacent to the cathode, produced by space 
charge, that repels some of the emitted electrons back to the cathode. Let x denote 
the position and I/ the potential of a point in the electron cloud, both measured relative 
to the cathode. In particular let x,, V, denote these quantities for the potential minimum 
between the electrodes. If space charge limitation of the current is taking place then 
V, must exist and be a negative quantity. It is convenient to define the electron energy 
distribution at the cathode in terms of the normal velocity U such that n(u)du is the 
number of electrons emitted per second per unit area of cathode with normal velocity 
components in the interval U, du. The saturation current density is therefore 

J ,  = e jox n(u) du 

where e is the magnitude of the electronic charge. The current density collected at the 
anode, when space charge limitation is taking place, is determined by the number of 
electrons that can pass the potential minimum V, 

J = e LI n(u) du 

with 

where m is the electronic mass. At any position x the electron velocity c at that point 
is related to the emission velocity U and local potential V through 

Let the interelectrode space be divided into two regions ; the anode region x, d .Y d x, 
and the cathode region 0 d x d x, where x, is the electrode separation. In each of 
these regions the space charge density is obtained by dividing the number of electrons 
passing through unit area per second by their local velocity. For the anode region 
this density is therefore 

In the cathode region the electrons at any point can be divided into two categories. 
There are those electrons entering into equations (2) and ( 5 )  that proceed past the 
potential minimum to the anode, and those of lower energy that can reach the relevant 
position x but are subsequently turned back again by the prevailing negative potential 
gradient. This latter category is therefore composed of two equally dense electron 
streams moving in opposite directions. The space charge density in this cathode region 
is then 

with 

&mu,’ = - e V .  (7) 

The charge densities of equations (5) and (6)  must be related to the potentials contained 
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implicitly within them through Poisson’s equation 

-- - -4zp. 
d2 V 
dx2 

Multiply both sides of Poisson’s equation by 2dV/dx where, from equation (4) 
2 dV/dx = (2mu/e) du/dx, and substitute for the charge density from equation (6).  
With these operations Poisson’s equation in the cathode region becomes 

0 G x G x,. 
dx 

-(-)2 d dV = D z m ( ~ ~ n ( u ) d u ~ + 2 1 ~ n ( u ) d u -  
dx dx 

Integrate both sides with respect to x remembering that the integration limit dV/dx = 0 
corresponds to V =  V, and therefore to x = x,. In the case of the second integral, 
where U, is a function of x, the integrand is zero at x = x, since at this position U, = U,. 
This first integration leads to 

(E) ’ = 8 7 ”  [I (U - w)n(u) du + 2 1: un(u) du) OGXGX,  
dx 

with 

$nw’ = +mu2 + ev,  (8) 

where w is the electron velocity evaluated at the position x = x,. The corresponding 
expression for the anode region, x, G x < x,, is simply the above expression with the 
omission of the final integral. At this point in the analysis Fry (1921) introduced the 
maxwellian distribution for n(u) to represent thermionic emission from the cathode. 
However the analysis can be pursued further, as follows, without specifying the form 
of the electron emission spectrum. By suitable division of the integration limits the 
following expression can be formulated, applicable to both the interelectrode regions 

W 

where the positive sign is applicable to the cathode region and the negative sign to 
the anode region. The integration limits in this equation can be simplified by expressing 
each integral completely in terms of one particular velocity variable. Express the first 
two integrals entirely in terms of the velocity U with distribution n(u) such that 
n(v)  du = n(u) du where U = 0 at U = U, ; and express the final integral in terms of the 
velocity w with distribution n(w) dw = n(u) du where w = 0 at U = U,. Then 

1 dV ’ %( x) = J: vn(u) du f 1; un(v) du - (9) 

where, from equations (3) and (4) 

The integrals on the right of equation (9) must be evaluated before a second integration 
with respect to x can be carried out, this requires a knowledge of the velocity distribution 
function. Fowler (1931) made the first successful attempt at calculating the normal 
velocity spectrum of photoelectrons emitted from a hot plane cathode of pure metal 
illuminated by monochromatic radiation. His treatment was based on the following 
three simple assumptions. Firstly within the photocathode material the number of 



1340 C B Wheeler 

electrons passing through unit area per second with velocity components normal to the 
surface in the interval o, d o  is given by Fermi-Dirac statistics as 

k T  { do n(w) d o  = 477m2-o in 1 + exp 
h3 

where E is the greatest electron energy at absolute zero and T the cathode temperature. 
Secondly it is assumed that the probability of an electron in the metal absorbing a 
quantum is proportional to the intensity of the illumination and that the absorbed 
quantum contributes only to the electron energy normal to the cathode surface. The 
final assumption is that the electron travels without energy loss to the surface of the 
cathode where the transmission coefficient is unity if the total normal energy of the 
electron exceeds some critical value W and equal to zero for energies less than this 
value. These latter two assumptions infer that the normal velocity of emission U is 
related to the velocity o inside the metal and to the illuminating quantum energy kl, 
through 

( 1 2 )  + ? I d  = +nlLo~ + hv - w. 
Substitution of equation (12) into (1 1) gives the required normal emission spectrum 

n(u) du = 4nAIm2-g~ kT In { 1 +exp (h(i’-I;:-iinic’ 
h 

where hilo = W -  E is the threshold energy, I the intensity of photocathode illumination 
and A a constant dependent on the nature of the cathode material. 

3. The low frequency approximation 

The space charge problem in thermionic emission is a special case of the above general 
formulation. Equation (13) shows that pure thermionic emission takes place when the 
illuminating frequency v approaches zero. The exponential term is then small in 
magnitude and the logarithm can be expanded to first order. This results in the 
maxwellian distribution that was inherently assumed by the early workers in this field. 
Substitution of this distribution into equation ( I )  leads to the Dushman equation of 
thermionic emission with the cathode work function reduced by the quantum energy hv. 
Equations ( I )  and (2) together give 

Substitution of the maxwellian distribution into equation (9) and evaluation of the 
exponential integrals leads to the differential equation given by Langmuir (1923). The 
result is quoted below for the purposes of comparison with later expressions 

where 
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and 

5 = 4 ( * 7 ~ ) ~ / ~ m ~ / ~ e ~ / ~  J,”2(kT)-3/4(X-x,). (17) 

In principle equations (14), (15), (16) and (17) enable complete solution of the space 
charge problem in thermionic emission. 

4. The low temperature approximation 

At temperatures near absolute zero equation (13) shows that electron emission is only 
possible if v > v,. In this case the factor of unity can be neglected in comparison with 
the large exponential term. The resulting distribution is independent of temperature 
and is cubic in velocity with a cut off at the value given by the Einstein relation 
+mu2 = h(v-v0) .  Equations (1) and (2) now give 

= l+- 
J 
- J s  ( h(:?v,))* 

Evaluation of the simple integrals that occur in equation (9) leads to 

($) = 2(a + 1)5’2 k a3I2(2a + 5) - 2 

where 

and 

J,”2{h(v - vO)} - 3 1 4 ( ~  - x,,,). 

Comparison of these last three equations with equations (15), (16) and (17) shows the 
broad qualitative difference expected from physical considerations, namely the replace- 
ment of the thermal energy k T  by the energy quantum h(v-v,). Before resorting to 
numerical integration of equation (19) it is convenient to consider the general case of 
arbitrary frequency and temperature. 

5. The general case 

Substitution of equation (13) into equations (1) and (2) produces integrations of the 
type already performed by Fowler (1931) and leads to 

where 
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where 

h(v - v o )  + eV, 
kT 

6 =  

Equation (22) forms the basis of the Fowler (1931) technique for measurement of 
threshold energy in which an experimental plot of lg(J,/T2) against hv/kT is made and 
the displacement of this curve from the above theoretical curve determined. Equation 
(24) forms the basis of the Dubridge (1933) technique in which lg(J/T2) is plotted 
against e V , k T  where, in this case, V, is the negative potential of the retarding anode 
and space charge limitation is assumed to be negligible. The results obtained by 
Dubridge are particularly relevant to the problem in hand that is concerned with the 
flow of electrons from a photocathode past a potential barrier produced by space 
charge rather than by a retarding anode. By differentiation of his experimental current- 
voltage characteristic he obtained the electron velocity distribution and compared it 
with equation (13). There was excellent agreement for the high velocity portion of the 
distribution that constituted half of the saturation current but there was a notable 
deficiency of low velocity electrons in comparison with the theoretical expression. 
Dubridge correctly attributed this discrepancy to theoretical oversimplification of the 
optical absorption coefficient and surface transmission coefficient. Both of these 
parameters are functions of the electron velocity within the metal but their dependence 
is weak in comparison with that of the dominant tail of the Fermi-Durac distribution, 
hence their valid approximation to a constant for the high velocity portion of the 
spectrum. The theoretical overestimate to the number itf slow electrons will, from 
equations (5) and (6) ,  lead to overestimation of the space charge density and its associated 
potential minimum. Consequently the following calculations, which are based on 
equation (13), will lead to an underestimate in the value of J ,  particularly in the region 
where 0.5 6 JIJ, d 1. 

Substitution of equation (13) into equation (9) results in integrations that cannot 
be performed exactly analytically. In the appendix these integrations are evaluated 
in the form of power series in the dimensionless parameters 6 and c where 

h( v - v o )  + e V 
kT ’ 

E =  

Equation (9) is then expressible as 

32J(2)712AIm3/2(kT)5/2 (g) 2 h3 

+ O[€- 7 2, 6- 7r2 

(E - 6)”’(exp( - 6)- exp( - E))]. 

exp(-c),61/2exp(-6), 

(27) 

Since V, is the potential minimum, it follows from equations (25) and (26)  that c 2 6. 
Consequently the above power series converges rapidly for sufficiently large values of 6. 
If only the 5/2 power terms need be retained then equation (27) becomes independent of 
temperature and reduces identically to the low temperature approximation of equation 
(19). Under the same condition, since y 2 6, equations (22) and (24) reduce identically 
to equation (18). A closer examination of the convergence of equation (27), which is 
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least rapid for the negative sign and for E >> 6, shows that the 512 power terms exceed 
all other terms if h2 > n2/3. This convergence condition, in conjunction with equa- 
tion (18), defines a lower limit to the parameter JIJ,: 

2 

J J J ,  >> *( 3 L) h(v-v,)  . 

Physically this condition implies that the bulk of the electrons that overcome the 
potential minimum must do so with excess energies of many times the thermal energy. 
In practical terms this condition is not severely restrictive since most photoelectric 
devices are operated at room temperature or reduced temperature. For example at 
room temperature with a threshold of hv, = 5 eV (2500A wavelength) the inequality 
requires J J J ,  >> 2 x 

The foregoing discussion and calculation indicates that the low temperature 
approximation of the previous section correctly describes the general problem provided 
the parameter J J J ,  is confined between the following limits 

for a photon energy of hv = 6eV (20004.  

Table 1 gives the numerical solution to equation (19) evaluated to 4 significant figures 
and figure 1 shows the general behaviour of the parameters a and p. The negative 
values of p correspond to the cathode region 0 < x < x, and the positive values to 
the anode region x, < x < x,. In the cathode region fi  asymptotically approaches 
the value of 2.396 and there is an analogous behaviour for the thermionic parameters 
q and g in equation (15) where 5 has the asymptotic value of 2.554. The following 
limiting series solutions are useful. 
Anode region 

( ~ ~ ’ ~ + ~ ~ r ’ ’ ~ - O ( ~ 1 - ~ ’ ~ ) ) - 0 * 0 9 3  
8 B = -  

3 J ( l 5 )  
a >> 1 

7 
L 

B = - ( d ’ 2  +$a -0 (a2) ) .  J5 
a << 1 

Cathode region 

6. Restricted areas in the current-voltage plane 

The boundary conditions used in 5 2 for the first integration of Poisson’s equation 
assume the existence of a potential minimum between the anode and cathode. This 
existence requires that x, satisfies the relation 0 < x, < x, and it follows that certain 
areas in the anode current-voltage plane can be defined where space charge limitation 
of the anode current takes place. 

The lower limit, x, = 0, requires that V, = 0, corresponding to zero field at the 
cathode and the minimum can only be situated there if the anode potential V,  is positive. 
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Table 1. Numerical solution to equation (19). /3 is positive in the anode region and negative 
in the cathode region. 

0.00 O~oooO 
0.05 0.1888 
0.1 0,2606 
0.2 0,3558 
0.3 0,4240 
0.4 0.4783 
0.5 0.5239 
0.6 0.5632 
0.7 0.5980 
0.8 0.6291 
0.9 0.6574 
1.0 0.6832 
1.2 0.7291 
1.4 0,7689 
1.6 0,8040 
1.8 0.8354 
2.0 0.8638 
2.2 0.8897 
2.4 0.9 134 
2.6 0.9353 
2.8 0,9557 
3.0 0,9746 
3.4 1.010 
3.8 1,043 
4.2 1,069 
4.6 1.096 
5.0 1.116 
5.8 1.156 
6.6 1,190 
7.4 1.220 

0.0000 
0.2112 
0.3051 
0,4443 
0.5562 
0.6538 
0.7422 
0.8241 
0.90 10 
0.9739 
1.044 
1.111 
1.238 
1.358 
1.472 
1,582 
1.687 
1.789 
1.888 
1,984 
2,079 
2.170 
2,349 
2,520 
2.686 
2.847 
3.004 
3.307 
3.598 
3.878 

8.2 
9.0 

10.6 
12.2 
13.8 
15.4 
17.0 
20 
25 
30 
35 
40 
45 
50 
60 
70 
80 
90 

100 
200 
300 
400 
500 
600 
700 
800 
900 

1000 
~- 

T- 

1.247 4,150 
1.271 4.4 13 
1,312 4.92 1 
1.347 5,407 
1,376 5,875 
1,402 6.328 
1,425 6,768 
1.462 7.562 
1,511 8,816 
1.549 10.00 
1,580 11.14 
1,606 12.23 
1.628 13.28 
1.648 14.30 
1.68 1 16.27 
1,707 18.15 
1,730 19.96 
1.749 21.71 
1,765 23.41 
1,865 38.58 
1.916 51.82 
1,949 63.94 
1.974 75.3 1 
1.992 86.09 
2.008 96.43 
2.020 106.4 
2.031 116.1 
2.04 1 125.4 

2.396 z 
~ . ... 

Figure 1. Dependence of U on p according to table 1. 
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For V, = 0 equation (18) requires that J / J ,  = 1. It is convenient to express the satura- 
tion and anode currents in terms of the current density J ,  where 

J ,  = (9~)- ' ($)  (y) h(v - vo)  3'2 x i z .  

The current-voltage relation defining this limit can be evaluated from equations (20) 
and (21) in conjunction with table 1 and the first quadrant in figure 2(a) shows the 
results for anode voltages such that 0 < eVJh(v - v a )  < 1. Figure 2(b) shows the results 
for greater anode voltages, presented logarithmically, with currents expressed in terms 
of the voltage dependent current density J ,  where 

0.4- 

0.3. 3 ' O L  2.5 

-0.8 -0.4 0 0.4 0.8 0 I 2 3 

Figure 2. Space charge limited regions in the anode current-voltage plane. (a) Small anode 
voltages, currents expressed in terms of J ,  . (b )  Large positive anode voltages, currents 
expressed in terms of J , .  

This current density is the space charge limit derived by Langmuir (1913) and Child 
(1911) under the same conditions of zero field at  the cathode but with the simplifying 
assumption of zero velocity of electron emission. The departure of the ordinates from 
unity on this curve is therefore a direct consequence of finite velocities of emission. 
Comparison of equations (31) and (32) shows that J ,  is the value of J ,  corresponding 
to eI/,/h(v - vo) = 1. The region lying below these two curves for positive anode voltages 
corresponds to x, < 0, indicating that there is no potential minimum between the 
electrodes. Consequently all the electrons emitted from the cathode are collected by 
the anode and J / J ,  = 1 throughout this region. The region lying above the curves 
corresponds to 0 <: x, < x,, indicating the existence of a potential minimum and 
therefore requiring J I J ,  < 1. 

The upper limit, x, = x,, requires that V, = V, ,  corresponding to zero electric 
field at the anode and a negative anode voltage. This negative voltage requires that 
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J / J ,  < 1 since velocities of electron emission down to zero are present, but this does 
not necessarily mean that the anode current is limited by space charge effects. The 
second quandrant in figure 2(a) shows the individual curves for J ,  and J that define 
this limit. There is space charge limitation of the current in the region above the curves, 
corresponding to 0 < x, < x,. The region below the curves corresponds to x, > xa, 
indicating the absence of such limitation. However in this lower region the anode 
current is completely determined by the number of electrons with sufficient energy to 
overcome the negative potential of the anode. This current is given by equation (18) 
with V, replaced by V, .  The current density J drops to zero as eV,/h(v - v o )  -+ - 1. 
but the cut off is only sharp for a cathode temperature of absolute zero otherwise the 
calculations are not valid in this region, as indicated by equation (28). The case of 
V,  = 0 is a singular point since the two curves for x, = x, and x, = 0 with the require- 
ment that J = J ,  = 0. This implies that the interelectrode space is then a region of 
constant zero potential and if any current is caused to flow at V ,  = 0 then it must be 
space charge limited. The maximum in J in the second quadrant shows that a current 
density of J > 0.355, cannot be collected by a negative anode without space charge 
limitation taking place. 

7. The approach to complete space charge limitation 

In the case of large positive anode voltages equation (29) evaluated at the anode enables 
J to be expressed in terms of J , ,  eVJh(v-vo), x, and x,. The parameter x, can be 
determined from equation (30) evaluated at the cathode and the net result is the following 
expression for J ,  valid for all J,/J 2 1 and eV,/h(v - vo) >> 1 

For sufficiently large V ,  this equation shows that J = J ,  for all values of J ,  > J .  For 
example if eV,/h(v-vo) 2 lo3 then J ,  d J d 1.05.J” for all J ,  2 J, .  Consequently if 
J ,  is gradually increased from zero at constant, large V ,  then J will be equal to J ,  
throughout the region 0 < J ,  < J, ,  for which there is no space charge limitation, 
whereas in the region J ,  < J ,  d x complete limitation abruptly sets in and J = J, .  
At lower values of V, it is necessary to resort to computation and figure 3 shows the 
dependence of J on Va for prescribed values of J J J  evaluated from table 1. The ordinate 
here is expressed in terms of the current density J ,  of equation (31), and the broken 
line represents the Langmuir-Child limit of equation (32). For a given V ,  the close 
spacing of the curves, which represent a factor of 100 variation in J , ,  shows the strong 
limiting effect of space charge on the anode current J .  However the approach to 
complete space charge limitation is less abrupt the lower the anode voltage. All the 
curves lie above the Langmuir-Child limit and are tangent to it at sufficiently large 
values of V,,  as required by equation (33). Furthermore the various curves separate 
from this dotted line in the manner required by this equation, namely those for low 
values of the parameter J , / J  separate first, but it is evident from figure 3 that the curves 
change their order at lower values of V,.  This suggests that, for a given V, ,  the current J 
is not a single valued function of J, .  Figure 4(a) demonstrates this fact more clearly 
by presenting J as a function of J ,  for specified positive values of V,. In all cases J / J ,  
exhibits a maximum that decreases in magnitude and moves towards lower values of 
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0 1 2 3 
tg { e ( / h ( u - u , ) }  

Figure 3. Anode current-voltage characteristics for various saturation currents. The 
broken line is the Langmuir-Child limit. 

J J J ,  with increase in V,. However multiplication of these axes by J ,  shows that the 
maximum in J increases and moves towards greater values of J ,  with increase in V, 
as physically expected. The ringed coordinates on these curves correspond to the 
onset of space charge limitation; the curve being defined by J = J ,  to the left of these 
coordinates. The broken lines represent the completely space charge limited current, 
attained as J ,  + 00. This limit is given by the first term in the following power series 
that is valid for all eVJh(v - vo) and for J,/J >> 1 

- 112 

(34)  
J 

The similarity between equations (33)  and (34)  arises because they are both approxima- 
tions to the same general expression. Figure 4(b)  shows the dependence of J on J, 
for zero and negative values of V, with the currents expressed in terms of J ,  . In this 
case the maximum in J decreases as V, is made more negative but the maximum always 
occurs for saturation currents of the order J ,  = 2 7 J 1 .  Once again the ringed co- 
ordinates indicate the onset of space charge limitation, as discussed in $ 6 ,  and the 
broken line represents the completely space charge limited current given by equation (34)  
which, for this purpose, can be rewritten as J = J1{ 1 + eVJh(v - v , ) } ~ ~ ' .  The information 
contained in figures 4(a) and 4(b) is shown collectively in figures 5(a) and 5(b) where 
the three curves of anode current depicted correspond to the onset of space charge 
limitation, the maximum current within the limited region and the completely space 
charge limited current. At sufficiently high values of V ,  the maximum and onset curves 
combine above the complete limit indicating that the curves of J against J, at constant 
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( 0 )  ( 6 )  

Figure 4. Dependence of anode current on saturation current for various anode voltages., 
The ringed coordinates correspond to the onset of space charge limitation and the broken 
lines represent the completely limited current. (a) Positive anode voltages, currents 
expressed in terms of J ,  . (b)  Negative anode voltages, currents expressed in terms of J ,  . 

V, have a small negative slope throughout the limited region, in agreement with equa- 
tion (33). For large positive and negative anode voltages the anode current for complete 
space charge limitation is less than that for the onset of limitation. However the situa- 
tion is reversed for el/ , /h(v-vo) lying between + 1.23 and -0.50. 

8. The behaviour of the potential minimum 

The magnitude V, and position x, of the potential minimum are most conveniently 
described in terms of the parameters eVJh(v - vo) and XJX,. Equation (18) shows that 
eVJh(v-vo) is a simple function of J / J ,  and it follows from equation (21) that x,/x, 
is a function of only. However p is a single valued function of CI which implies that 
X J X ,  is a function of the two parameters J I J ,  and eV,/h(v- v,,). Figures 6(a) and 6(b) 
shows xJx, as a function of J , /J  for various specified values of anode voltage. The 
extreme left hand coordinates on these curves correspond to the ringed coordinates in  
figures 4(a) and 4(b) marking the onset of space charge limitation. In the case of negative 
anode voltages the minimum makes its appearance at the anode and moves progres- 
sively towards the cathode with increase in J J J .  However for positive anode voltages 
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Figure 5. The anode current for onset of limitation, the maximum limited current and the 
completely limited current as functions of the anode voltage. (a)  Small anode voltages, 
currents expressed in terms of J1. (b) Large positive anode voltages, currents in terms of J, .  

the minimum appears at the cathode, moves out a maximum distance from the cathode 
and then moves back to reach the cathode as J J J  + 00. The maximum excursion 
from the cathode is always less than 0.5xa, it decreases with increase of anode voltage 
and occurs very near J,/J = 4, corresponding to eVJh(v-vo) = -0.5. Figure 7 shows 
the behaviour of this maximum in x,/x, as a function of positive anode voltage. The 
broken line here represents the following theoretical expression valid for very large 
anode voltages 

The situation occurring at zero anode voltage has been briefly discussed in relation to 
figure 2(a) where it corresponds to the singular point at which the curves for x, = x, 
and x, = 0 meet each other. Figure 6(h)  which is based on an unambiguous treatment, 
shows that the minimum starts at xJxa = 0.5, corresponding to J = J ,  = 0, and then 
moves towards the cathode as current flow takes place. 

9. Discussion 

It is essential that a vacuum photoelectric device designed for quantitative measurement 
of radiant energy should be operated under conditions such that no space charge 
limitation of the current takes place. Figure 2(b) gives the upper limit to the saturation 
current J ,  that can be collected for a given V ,  without such limitation and the corre- 
sponding maximum illumination of the cathode can be determined from this value. 
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Figure 6. The position of the potential minimum as a function of the current ratio J J J  for 
various anode voltages. (a)  Positive anode voltages. (b) Negative anode voltages. 

Figure 7. The maximum separation of the potential minimum from the cathode as a function 
of positive anode voltage. The broken curve represents the asymptotic expression. 
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However it cannot be inferred that limitation is not taking place if the anode current J 
is less than this critical value of J ,  corresponding to the onset of limitation. Figure 5(b). 
shows that for eVJh(v-v,) > 1.23 the limited current can be less than this value of J , ,  
consequently a sufficient condition for absence of limitation is 

It follows from this expression that, as a general guide, no space charge limitation is 
possible if the saturation and anode currents are less than the Langmuir-Child limit. 
This conclusion is unaltered by the fact that the theoretical model overestimates the 
number of low energy photoelectrons, as discussed in 9 5. 

The negative quadrant in figure 2(a) has particular bearing on the validity of experi- 
'ments that measure cathode work functions, Planck's constant or photoelectron energy 
distributions by the retarding potential technique. The form of this curve shows that 
it is impossible to prevent space charge limitation when collecting either just the very 
high energy electrons, -eV,/h(v-v,) N 1, or when collecting almost the complete 
spectrum of electron energies, - eT/,/h(v - vo)  N 0. Space charge limitation is likely 
to be more marked in this latter region since nearly the full saturation current is collected 
there. As an example of this situation consider the experimental arrangement used by 
Dubridge and Hergenrother (1933) consisting of a flat molybdenum cathode, 
3 8 ~ 2 . 6 " ~  and a parallel nickel anode 4.8" away. The range of cathode 
illuminating wavelengths had an average quantum energy situated above the molyb- 
denum threshold by h(v - v,) = 0.8 eV. For these numerical values equation (31) 
gives I, = 7.1 FA. Reference to figure 2(a) shows that a saturation current of this 
magnitude would not permit the photoelectron energy spectrum to be examined over 
the lower $ of its range by the retarding potential technique. However at the time 
that these experiments were carried out, the available monochromatic sources of 
radiation would have produced currents many orders below this value and there is 
no reason to expect that the results obtained were influenced by space charge effects. 

When operating at  very low anode potentials the nature of the anode material must 
be taken into account since the potential to be used in these calculations is in fact the 
sum of the applied potential and the contact potential between the electrode metals. 
Therefore the curve of figure 4(b), corresponding to V ,  = 0, gives the current that can 
flow between similar parallel electrodes in vacuum at the same applied potential when 
one of them is illuminated. In particular the curve shows that the maximum current 
density that can flow between the electrodes, spaced a distance x, apart, is 

2.63 2e '/' h(v-v,) 3/2  
J,,, = 2.633, = -(-) 9n m (-) xL2. 

Section 8 shows that the magnitude of the potential minimum V, and its position x, 
are independent quantities since the former parameter is not an explicit function of the 
anode voltage. Figure 8 illustrates this independence by presenting V, and x,.as func- 
tions of J, /J  with variation in this latter parameter brought about by variation ofeither J ,  
or of J separately. In both cases it is assumed that eVJh(v - vo)  >> 1 and also that the 
current is completely space charge limited, therefore J = J ,  at all times. The upper 
curve corresponds to variation of J ,  at constant 3 achieved by varying the intensity of 
cathode illumination while maintaining the anode potential constant so that J = J , .  
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I/ 

Figure 8. Dependence of the position of the potential minimum and its magnitude on the 
currerlt ratio J J J  for large positive anode voltages. The upper curves are for constant J 
and the lower curves for constant J , .  

In this case x, exhibits the same behaviour as in figure 6(a) and the ordinate here is 
so chosen that the one curve is valid for all V,.  The lower curve corresponds to variation 
of J at constant J ,  achieved by varying V,,  thereby varying J = J , ,  and maintaining a 
constant cathode illumination. The ordinate here is chosen such that the one curve 
is valid for all J , .  In both cases the curves for V, are identical whilst the behaviour of 
x, is entirely different. 

Appendix 

Substitution of equation (13)  into (9) and use of equations (4), (8), (lo), (25)  and (26)  
results in the equation 

h3 
32J(2)n2AIm3'2(kT)5'2 
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where 

I ( € )  = JoCO y 1 1 2  In{ 1 + exp(c - y ) )  dy 

I ( c , 6 )  = ~of~by’~21n{l+exp(c-y) )  dy 

Z(6) = y”’ln{l+exp(6-y)) dy. JOX 
In the case of the integral I(€) change the variable to z = c - y and divide the new range 
of integration, -CO to E, into the two ranges 0 to E, and - co to 0. 

r f  rx 
I ( € )  = J (c - z)’” In( 1 + exp z) dz + J (t + z)’” In( 1 + exp - z )  dz 

0 0 

where the variable has been changed in sign in the last integral. In the first integral 
above use ln(1 +exp z) = z+ln(l +exp -z). Absorb that part of the last integral 
lying between the limits of 0 and c into the first integral to form the expression 
(c - z)’” +(E + z)lj2 in the integrand. For this integral 0 < z < E, so enabling a binomial 
expansion of the integrand. The result of these operations is 

I ( € )  = (c + In( 1 + exp - z) dz + (c - ~ ) ” ~ z  dz Jof 
+ 2 d i 2  Jofln(l+exp - z ) d z - i ~ - ~ ~ ~  z2  ln(l+exp -z)dz Jof 
- 8 2 -  7/2 lof z4 ln(1 +exp -z) dz+.  . . . 

Since z is a positive quantity in all these integrals the following expansion can be used 
CO 

ln(l+exp - z )  = 1 (-l)n+’n-’exp(-nz). 
n= 1 

The resulting integrals containing integral powers of z can be performed through 
successive integration by parts. 

m 

Z(c) = x ( - l ) ” + l n - ’  [ ( C + Z ) ” ~  e x p ( - n z ) d z + & ~ ~ ~ ~ + 2 t ~ ~ ’  1 (- l)n+’n-’ 
J €  

x { 1 -exp( - ne)) - + c - ~ / ’  

x (2- (n’c’ + 2nr + 2) exp( -nc)) -&c- ’/’ 

x (24 -(n4c4 -4n3c3 + 12n2c2 + 2 4 n ~  + 24) exp( - ne))  +. . , 

( -  i)n+in-4 

( -  I)”+ 

The summations over the independent terms can be evaluated in terms of Bernoulli 
numbers. However the remaining integral cannot be performed analytically but it 
can be bracketed between two closely spaced limits as follows. Within the range of 
integration the factor (E + z)”’ lies between ( 2 ~ ) ’ ~ ~  and (t+z)(2c)- ‘I’ and it readily 
follows that the complete integral lies between (2~)’/’ C ( -  l)n+ ‘n-’  exp( -ne)  and 
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( 2 ~ ) ' ~ '  2 ( -  1)"' ' K 2 ( 1  + 1/2nc) exp( -ne) .  Finally if all powers of E up to € - ' I 2  are 
retained and also the dominant n = 1 exponential term then 

In the case of the integral I(€, 6) the index of the exponential is always positive and 
the logarithmic term can be expanded as follows 

In{l+exp(c-y)} = c - y +  ~(-1)"+ 'n- ' exp( -n(c-y)}  

and this leads to 
r r - 6  

I ( E , ~ )  = & ( ~ - 6 ) ~ ~ ' ( 2 ~ + 3 6 ) +  C(-l)"'"n-'exp(-ne) I y1/2 exp(ny)dy. 
.'O 

The integral here is analogous to one of the integrals contained in I ( € )  in that it can be 
bracketed between two closely spaced limits. Within the range of integration the 
factor y"2 lies between y ( ~ -  6)-112 and (E - and it readily follows that the complete 
integral lies between 

i exp( - n6) - exp( - nc)  
n(c - 6) ( ~ - 6 ) ' ' ~  C ( - l ) n + ' n - 2  

and 

( ~ - 6 ) l / ~  ( -  I)"+ 'n-2{exp( -n6)-exp( -ne)}. 

Finally if all terms up to the dominant n = 1 term of the exponential are retained then 

I(€, 6) = &c-6)3~2(2c+36)+O[(r-6)1/2{exp(-6)-exp( -E)}] .  

The remaining integral Z(6) reduces to the same power series as that for I ( € )  except 
that c is replaced by 6. 
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